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OPTIMAL DESIGN OF STRUCTURES OF COMPOSITE
MATERIALS

ZENON MROZ

Institute of Basic Technical Research, Warsaw, Poland

Abstract-Dptimal design criteria for structures ofcomposite materials are discussed assuming that the phases are
either perfectly plastic or perfectly elastic and the design is aimed at maximizing limit load or minimizing static
compliance of the structure. Both internal and external reinforcement are considered. An example of a circular
plate is presented in order to illustrate the general criteria.

1. INTRODUCTION

PROBLEMS of optimization of uniform structures have been formulated for various design
criteria [1-7]. For elastic structures, the optimal design for given material volume may
correspond to minimum static or dynamic compliance measured as the work of external
forces on induced displacements. For perfectly-plastic structures, the condition ofmaximum
limit load is usually assumed in considering the optimization problem. In the case of free
vibrations, the optimal design is '>ought that corresponds to maximum fundamental
frequency, whereas in the case of buckling, the maximum buckling load is to be attained for
the optimal solution. If no constraints are imposed on the design, the sufficient optimality
criteria have a similar form for these cases: a certain function G, being the specific elastic
energy or the specific power of plastic dissipation in the static case, and the difference of
amplitudes ofspecific elastic and kinetic energies in the case ofharmonic vibrations, should
be constant on a traction-free boundary subjected to modification and should decrease in
the direction of the exterior normal to that boundary. To obtain more practicable designs,
some geometric constraints are often introduced; for instance, the free boundary is required
to lie in some prescribed region or beyond some forbidden region. The modification of the
design criteria in presence of geometric constraints has been discussed in [13].

In the present paper, we shall derive the optimality criteria for structures composed of
several materials. In particular, the analysis may pertain to fibre-reinforced materials where
thin fibres of high strength reinforce a weaker matrix, or to laminated materials where thin
layers ofreinforcement are introduced in order to augment stiffness or load carrying capacity
of a structural element. The problem of optimization of reinforced concrete plates or shells
has already been discussed in numerous papers [8-12]. It has been assumed that both
reinforcement and concrete are perfectly plastic materials and tensile stresses are carried
by reinforcement rods whereas the concrete carries compressive stresses. The problem of
optimization ofelastic, fibre-reinforced plates was considered in [15]. Here, we shall analyse
an arbitrary composition of several materials without imposing in advance a form of
particular phases. For given volume of phases, the optimal design should correspond to
maximum limit load or to minimum elastic compliance, for perfectly plastic or elastic
materials, respectively. In Section 2, we shall discuss the case of a two phase material with
internal reinforcement. In Section 3, the case of external reinforcement will be considered
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and generalizations will be briefly discussed in Section 5. In Section 4, two examples will be
presented of a plate with interior and exterior reinforcement.

2. OPTIMALITY CRITERIA FOR INTERIOR REINFORCEMENT

Let us consider first some typical cases of optimization oftwo-phase materials assuming
that these are either perfectly plastic or perfectly elastic. The results can be generalized to
other design criteria or to a greater number of phases.

2.1. Criterion of the maximum load carrying capacity

Figure l(a) presents schematically a body loaded on the portion ST of its boundary S,
supported on the boundary S~ so that the work of support reactions Tp on induced displace­
ments up equals zero, fTp . up dS~ = 0, (the dot between two symbols will denote the inner
product of respective tensors or vectors), and with the free boundary So. It is assumed that
all portions ST, S~, So are prescribed and the boundary surface S = ST U S~ u So embraces
the region of fixed volume V. Let this volume be occupied by two materials whose volumes
V, and Vm can vary. The material of volume Vr is of greater strength or stiffness and will be
called the reinforcement whereas the weaker material of volume Vm will be called the matrix.
Assuming now that both materials are perfectly plastic, the problem of optimization can be
formulated as follows: for the specified boundary S and volume V, the given volume V, of the
reinforcement should be located in an optimal manner within V so that the limit load of the
whole body should attain the maximum. The reinforcement can lie totally in the interior of
the body or coincide on some portion AB with its boundary S. The modification ofthe form
ofreinforcement can thus be performed by altering its interior surface Si whereas the portion
AB coinciding with S can be regarded as fixed.

Consider the rigid, perfectly plastic structure in the limit state. Denote by Dr(t) = (Jr' t
and Dm(t) = (Jm' t the specific powers of dissipation (per unit volume) of the reinforcement
and the matrix. Since the reinforcement is stronger than the matrix, for any plastic strain
rate t there is

(2.1 )

(a) (h)

FIG. I. Structure with internal (a) and external (b) reinforcement.
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On the boundary Si between the two phases the stress and the strain rate can vary dis­
continuously; however, the velocity vector v and the interaction force R are continuous
functions at the transition between these phases. We can thus write

[RJ = [aijvJ = 0, [~~J = aivj, (2.2)

where square brackets denotejumps ofenclosed quantities; Vi denotes the unit vector normal
to Si and directed in the interior of Vm , and ai is the discontinuity vector. The first equality
(2.2) means that the interaction force on Si is continuous and the second relation expresses
the jump-like variation of the gradient ovJox j at the transition from v,. to Vm • In view of (2.2)
we see that the strain rates ofelements tangential to Si are continuous on Si' Thus stress and
strain rate discontinuities satisfy the equality

(2.3)

The analysis of the stress state at the interface between two materials of different yield
limits can be found in [14].

Denote by an am the stress states within the two phases in the limit state. We can write

(2.4)

where v and t denote the velocity and strain rate fields defined throughout the region of
volume V. Suppose now that the boundary Si has been altered and denote the new boundary
by S;. The stress state within the phases is now a~ and a~. This state satisfies the equilibrium
equations, boundary conditions on ST for the surface tractions AT where A is a positive
multiplier. We can thus write the principle of virtual work for the stress state a~, a~ and
the velocity field v

f (J~.tdV~+ fa~.tdV~ = AfT.VdST' (2.5)

Since V~ = v,. + AV, V~ = Vm - AV where V~ and V~ denote the volumes of the two phases
after modification of the boundary Si' subtracting (2.4) and (2.5), we obtain

f(a~-am). t dV~+ f(a~ - ar). t dV~+

+f [Dr(t)-Dm(t)]d(AV) = (A-l)fT.VdST, (2.6)

where the stresses ar and am are related to t by the associated flow law. Thus, writing

(2.7)

it is understood that within AV the stress state ar is related by the flow law to the plastic
strain rate t.
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Starting from equation (2.6), the necessary and sufficient conditions of optimal design
can be derived. We are looking for such a form of v,. and its situation within the region V
which corresponds to a maximum of the load carrying capacity.

Denote G = Dr(i:) - Dm(i::) and by Gi the value of G on Si' Since G may change dis­
continuously when passing from the interior of v,. to v,,,, Gi will denote the value of G at

boundary points ofthe region v,., lying on Si' Assume that Si is so chosen that Gr is constant
Writing G = Gi+G", and using the equality

rG;d(tlV) = 0, (l.K)

equation (2.6) will take the form

(i-1)fT.VdST= fGt.d(tlV)+ f(O';,,-O'm).i:dV;,,+ f(O'~-O'r).t.<H~ (2.9)

If G 2 Gi in the interior of v,., and G So Gi within 1-';", then G'" d(tl V) sO; the two remaining
integrands on the right-hand side of (2.9) are non-negative in view of the principle of maxi­
mum plastic work [16]. Thus ;, s 1 and any modification of Si cannot lead to increase of
the limit load. The set of sufficient conditions for absolute maximum of the limit load can
thus be expressed as follows

G(x) 2 (1;' for x E ~;, G(x) s Gr for XE ~1I1'

(2.IOa)

(2 lOb)

(2.121

Identical conditions could be derived if we assumed the limit load to be constant and sought
for the optimal form of the region v,. corresponding to the minimum of reinforcement
volume. In fact, setting in (2.6) A = 1 and using (2.10a) we obtain

GitlV= f(O'm-O';,,).i:dV~!+f(O'r-O'~).EdV~- fG",d(tlV). (2.11)

Thus tlV 2 0 provided the conditions (2.10) are fulfilled. The necessity of the condition
(2.10a) for a local extremum of the limit load and the condition (2.11b) for an absolute
maximum can also be demonstrated by departing from equation (2.6).

2.2 Criterion qf the minimum elastic compliance

Assume now that the two materials are linearly elastic, satisfying the generalized
Hooke's law. The optimal shape of Vr will be sought that corresponds to the minimum of
elastic compliance measured as the work of surface tractions on induced displacements

I = JT. U dS T ·

Both the reinforcement and the matrix are characterized by a positive--definite specific
elastic energy E = 10'. E. For any E, we have

(2.131

where O'r and O'm denote stresses in particular phases, related by the Hooke's law to the
strain E.
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Similarly as previously, assume that a" am' &, u denote stress, strain and displacement
fields within the regions v,: and Vm ; a~, a;", &', u' are the corresponding fields after modifica­
tion of Si' The new regions occupied by the reinforcement and the matrix are denoted by V~

and V;,.. According to the principle of virtual work, we can write

fT. udST = far.&dv,:+ fam.&dVm= fa~.&dv~+ fa;,..&dV;",

fT. u'dST = fa~'&'dv~+ fa;",&'dV;". (2.14)

Using (2.14), the variation of elastic compliance due to modification of the region v,: can be
expressed as follows

l' - 1= 5T. (u' -u) dS T = r~ar. AI' dV~+ 5Aam. AI' dV;"- 5G~ d(AV), (2.15)

where the differences Aar = a~-ar and Aam= a;"-amare related by the Hooke's law to
the strain difference AI' = &' - &; G similarly as previously, denotes the doubled difference of
specific energies, G = 2Er(&)-2Em(&)·

Let Gi denote the value of G at points of v,. lying on Si' If Gi is constant on Si' then
setting G = Gi +G~, equation (2.15) can be presented in the form

(2.16)

If G(x) ;:::: Gi for x E v,: and G(x) ~ Gi for x E Vm , then from (2.16) it follows that l' ;:::: I since
all terms on the right hand side of(2.16) are non-negative. Thus the conditions analogous to
(2.10) assure the absolute minimum of the elastic compliance.

3. OPTIMALITY CRITERIA FOR EXTERIOR REINFORCEMENT

Now, let us consider the case when the reinforcement is located in the exterior of the
body of volume Vm and of specified shape; on the portion S~ the body is supported and is
loaded on the portion ST of its boundary by the prescribed surface tractions T. Assume that
the reinforcement of given volume v,. is attached to the free boundary Sr of the body, see
Fig. l(b). The connection of the two phases is assumed to be perfect, that is there is a dis­
continuous change from the properties of the matrix to those of the reinforcement when
passing the interface Sr' The modification of the reinforcement shape can be performed by
modifying its traction-free surface So which should lie within some admissible region Qa

bounded by the surface SB'

We shall confine ourselves to considering the limit state of the structure and derive the
criteria of optimal shape of the boundary So, which corresponds to the greatest limit load
for constant volume of the reinforcement.

Let am' a" i:, v denote the stress, strain-rate and velocity fields within the two phases
in the limit state. Denote by a~, a;,. the stress state upon changing the boundary So to So;
this state satisfies the internal equilibrium equations and boundary conditions on So
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(3.1 )

(3.2)

and ST for the surface tractions AT. We can thus write

fT.vdST = fO'm·tdVm+ fO'r·tdVr

(A-I)fT.vdST fO';".tdVm+ JO'~.tdV~

In writing (3.2), it has been assumed that the velocity field can be continued beyond So and
is defined within the whole admissible region Qa' Subtracting (3.1) from (3.2) we have

(A 1)JT .vdST = J(O';"-O'm)·tdVm+ J(O'~-O'r)·i:dV~- JO'r.td(LlV). (3.3)

Denoting G = O'r' t = G(t) and assuming that G = Go const. on So, equation (3.Jl,
upon using (2.8), can be presented in the form

(I, 1)JT.vdST = f (O';"-O'm)·tdVm+ f (O'~-O'r)·tdV~- JG",d(LlV), (3.4)

when, similarly as previously, G = Go +G",. Equation (3.4) is analogous to (2.9) and the
criteria of absolute maximum of A are identical to (2.10) provided Gi is replaced by Go.
Thus in the whole admissible region beyond So there should be G ~ Go and in the interior
of Vr the inequality G ~ Go should be satisfied. In particular, if the reinforcement does not
lie over the whole boundary Sr but only on its portion AB the specific power of dissipation
on portions AF and BG should not be greater than Go.

The present formulation of the optimal reinforcement problem can also be regarded
as the problem of optimal adaptation of a structure. Let the body of volume Vm be designed
to carry some prescribed loads To. When the loading has changed from To to T 1 or some
additional loads are superimposed, the structure should be optimally adapted to this new
loading. This adaptation can be performed by adding a material in some parts of the basic
structure which are weakest for the new loading; this is equivalent to considering exterior
reinforcement and the criteria of optimal adaptation are the same as those of optimal
exterior reinforcement.

For elastic structures, the criteria ofoptimal reinforcement corresponding to a minimum
ofelastic compliance are identical. The specified elastic energy is now used as the function G :
this should be constant on So and decrease when passing from the interior of Vr into the
admissible region Qa'

4. EXAMPLES

Consider a circular plate of radius a, thickness 2h, simply supported, and uniformly
loaded by the lateral load q. When the plate is made of a uniform material satisfying the
Tresca yield condition, the limit load ql of the plate equals

(Ita2 6Mol , (4.1)

where MOl = (Jolh 2 is the limit bending moment in uniaxial flexure and (JOl is the yield
limit in tension. In order to enhance the limit load, the plate is internally reinforced by a
perfectly plastic uniform material, obeying the Tresca yield condition with the yield limit
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0"02 > 0"01' The limit load of the reinforced plate will thus lie within the interval

6M01 < qa2 < 6M02, (4.2)

where M 02 = 0"02h2. We assume that the reinforcement is placed in the central region°:s; r :s; p; since the plastic power of dissipation increases with the distance from the
middle plane, the exterior boundary of the reinforcement should coincide with the lateral
plate surfaces and the function z = z(r) defines its interior boundary subject to variation,
Fig.2(a).

I

f~--
(a)

(b)

FIG. 2. Circular plate, simply supported: (a) interior, (b) exterior reinforcement.

4.1. Assume that for °:S r :s; p the stress state is represented by a corner ofthe Tresca
hexagon for which the radial and circumferential bending moments M r and M6 are equal,
that is Mr = M6 = Mo, xr ~ 0, X6 ~ 0, where

M o = 0"0z(h2-Z2) = M02 -(0"02 -0"0dz2, (4.3)

and x" X6 are the radial and circumferential rates of curvature. From the equilibrium
equation

d
(rM) M - -4qr2,dr r - 6 = ~

and (4.3), we obtain for °:s; r :s; p

M r = - i-qr2+C1 ,

(4.4)

(4.5)

where C1 is a constant. In the region p :s; r :s; a we assume the stress state corresponding to
the side of the Tresca hexagon for which M6 = MOl = 0"01h2, xr = 0, x6 > 0. From the
equilibrium equation (4.4), we find

M r = -Mo(a-r)+f;q(a 3 -r3
). (4.6)

Satisfying the continuity condition of Mr for r = p, equation (4.5) takes the form

M r = i-q(p2-r2)-M01(~-1) +f;q(~ _p2). (4.7)

From (4.7) and (4.3) we can determine the function z = z(r), namely

(0"02 -0"01)Z2 = M 02 -!q(p2-r2)+Mol(~-1)-iq(~_p2). (4.8)
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Since for r = p there is M, = MOl, from (4.6) we obtain

I' ('1_6M;t) (4.9)
d . qcr,

The above static field can be applied when z(O) 2 0 which can be expressed by the condition

(4.lO1

For higher values of q, the reinforcement will fill the entire region:; =c t h withll1 some
interval 0 :S r :S p) . This case will not be discussed here.

Let us now consider the kinematic field, Since the two materials satisfy the Tresca yIeld
condition, the optimality criterion for the corner of the Tresca hexagon for which A;J, ,ViII
takes the form

on the surface:; == z(r). The condition (4.11) leads to the following differential equation

d I d,i"
:; ( ell:2 + r dr) c'"

where 'l. is a positive constant and ,t is the rate of plate deflection. Using (4.8), we obtam

where

d (/hi)
dr dr,

x Hr

-13 ,(A+Br2 )'

(4,14)

B = (/

4(a02 -aOl)

In the region p :S r :S a the stress state corresponds to the side of the Tresca hexagon for
which Me = MOl, and %,. = - d 2It'/dr2 = O. Hence

(4.151

where D is constant Integrating (4.13) and satisfying the continuity conditions of Ii' and
dw/dr for r = p and the condition dw/dr = °for r = 0, we find

,x [(-1(,1 + Bp2) yi A ).. ' .2.O:s r:S p: Ii') = - -- .--- (a- p)-,,(A+BI )+,(,1 t-B p2)
B P Ii

j A vA+-I(A+Br2) p , 1'1
+ B In ~~4 + "i(A+Bp2) I~ +y A In pJ' (4.16)

P :S r :S a: It'2 =~[{~A~Bp2)__ ~)fl.}a_r). (4!

It can be checked that within the whole plate there is x, 2 0 and Xo 2 0; thus the kinematic
field (4.17) satisfies the flaw laws for the Tresca yield condition, The power of dissipation
is constant on the surface z = z(r) and is smaller in the exterior of reinforcement than in its
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interior. Thus all optimality conditions (2.10) are satisfied and the solution (4.8) corresponds
to the absolute maximum of the limit load for constant volume of the reinforcement.

4.2. Assume that the plate of constant thickness 2h is reinforced by adding the rein­
forcement on the lateral surfaces, Fig. 2(b). The shape of reinforcement is defined by the
function z = z(r). In the region 0 :::; r :::; p the limit bending moment is expressed as follows

(4.18)

where MOl = (Jolh
2

. The stress within the plate is determined by the formulae (4.6) and
(4.7). The function z = z(r) will be determined from (4.18) and (4.7)

2 a 1 2 2 1 (a 3
2)

(J02' Z = M02-Molp +4Q(P -r )+6Q p-p , (4.19)

and the value of p is found from (4.9). This solution is valid for arbitrary values of q, larger
than the limit load of the non-reinforced plate, qa2 > 6M0 I •

The kinematic field is defined by (4.17), where

B= (4.20)

(5.1 )

In the present case, the specific power of dissipation is constant on the free surface z = z(r)
of the reinforcement, G = Go = const., and is smaller than Go on the remaining part of
the lateral surface z = ±h, p :::; r :::; a. However, the specific power of dissipation increases
with the distance from the middle plane and hence it is larger outside of the free surface
z = z(r). Therefore the presented solution corresponds only to local extremum of the
limit load and may not represent the optimal solution. Similarly as in the case ofsolid plates,
the reinforcement could be better utilized in the form ofdiscrete ribs arranged radially and
circumferentially. The problem of correct formulation of optimal design problem for solid
plates has been discussed in [21J and all conclusions there reached can be applied to the
present case of exterior reinforcement.

5. GENERALIZATIONS

Let us now consider some generalizations of two fundamental cases discussed in
Sections 2 and 3.

5.1. Assume that the internal reinforcement of the volume Vr is located within the
matrix of volume Vm ; however, both the free boundary So of the body and the internal
boundary Si of the reinforcement are subjected to modifications which are independent of
each other. The optimal form of So and Si should be determined for which the maximum
load carrying capacity is attained.

Let 0'., O'm and O'~, 0';" be the stress states corresponding to two shapes So, So and S;, S;.
Proceeding analogously as in Section 2, we can write

f (O'~ O'r)·tdv,,+ f (O';"-O'm).tdV;"- fO'r·td(ilv,,)+ fO'm.td(ilv,,)- fO'm·td(ilVm)

= (A 1) f T.vdST
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where v and E are the velocity and strain rate fields for the body with the boundaries So
and Sj ; the volumes after variation of So and S; are V~ = v,. +d v,. and V:n = V", -- d v,. +d Vm
Denote

(5.2)

From (5.1) it follows that when the functions Go and Gi are constant on So and Si' respec­
tively, and decrease when passing in the exterior of Vm and v,., the absolute maximum of
the limit load is attained.

The problem is somewhat modified when the limit load is prescribed and the optimal
form of So and S; is sought that corresponds to a minimum of total cost of materials.
Introducing the cost function in the form

(5.3)

where Cm and Cr are specific costs of the matrix and the reinforcement. From (5.1) the
optimality conditions are obtained in the form

Gr = Dr(t)-~Dm(t) = rx on S., "Cr
(5.4)

where rx is constant. It should be noted that for the problem so formulated there can be
solutions for which Vm = 0 or v,. = 0 when the conditions (5.4) cannot be satisfied simul­
taneously.

5.2. Consider a composition of n materials of different yield limits and of volumes
v,.b k = 1,2, ... , n; it is assumed that the yield limits increase with k. An optimal system is
obtained by placing one phase in the interior of the other so that the functions Gk should
remain constant on the boundaries of adjacent phases and decrease when passing from a
stronger to a weaker phase. On the exterior free boundary So belonging to one of the phases,
the function G should also be constant and decrease in the outside of So. Thus we have

G;; = Dk(t)-Dk - 1(t) = const. on Sib

G? = D/(e) = const. on So,

k = 2,3, ... , n

where Gkdenotes the value of G at points of the phase k lying on the boundary with the
weaker phase k - 1 and G? denotes the specific power ofdissipation on the free boundary So.

These general statements coincide in particular cases with theorems on optimal shapes
of multiply-connected cross sections of prismatic bars subjected to torsion [17-19]. Thus,
for instance, according to theorems given in [18] and [19], from all multiply-connected
cross sections of given area and given joint area of holes, a ring bounded by two concentric
circles has the greatest torsional stiffness [18] or the greatest limit load [19]. Since all
holes can be treated as a weaker material of zero yield limit, thus according to (5.5) these
should be located in the vicinity ofthe bar axis and the dissipation power should be constant
on the surface bounding the holes and should decrease toward the bar axis; the dissipation
power should also be constant on the exterior boundary So and these conditions are satisfied
for an annular shape of the cross section. Only the condition of decreasing of D(e) in the
exterior of So is not satisfied. Similarly as from (2.9) and (2.16), an extremum of the limit
load or the static compliance follows from (5.1) and from the analogous equation for an
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elastic structure. In fact, all terms on the right-hand side of (2.9) or P.16) are infinitesimal
quantities of the second order if infinitesimal variation of the free boundary is considered
(for more detailed discussion, see [3] and [4]). The theorems given in [18] and [19] are
stronger since they state that this extremum is a maximum.

6. CONCLUDING REMARKS

In deriving the optimality criteria for composites, we have not imposed any constraints
on the reinforcement form; the optimal form should thus follow from the optimality
criterion. For instance, if a sheet is subjected to uniform uniaxial tension, the given volume
of reinforcement is utilized in the best way in the form of thin fibres arranged along the
lines of tensile stresses. The optimal forms of reinforcement in plates are shown in Fig. 2
for the case of axial symmetry. When some constraints are imposed on the form of rein­
forcement, the optimality criteria should be modified similarly as the respective criteria
for uniform structures with geometric constraints [4, 13]. For instance, when in the examples
of Section 4 the reinforcement is introduced in the form of annuli of segmentwise varying
thickness, the mean values of the specific power of dissipation or elastic energy should be
the same for each segment. For fibre reinforced materials, we can obtain the criteria
previously derived in [8-12], requiring the rate of elongation of fibres to be constant within
the structure.
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A6cTpaKT~-PaCCMaTpI1BaIDTC5I YCJlOBI151 OnTI1MaJlbHOrO npOeK fI1pOBaHI151 KOHCTpyKUl111 COC 1051 11111 X In
HeCKOJlbKO cPa1. j],onYCKaeTC5I 'ITO cPa3bl 51BJl5lIDTC5I JI1160 l1L1eMlbHO ynpyrl1MI1 JII160 l1L1eaJlbllO nJlaCTI1'1l1bIMIf.

PaCCMaTpI1BaIDTC5I LlBa CJlY'la51 apMl1pOBaHI151: BHyTpeHHce 11 BHCUIHec. B Ka'lCCTBC 11flIDCTpaUI111 06111eii

TeOpUI1 nail npl1MCp KpyroBoii nJI:.!CTI1I1KI1 C BHyTpCHHIfM 11 BllellJIIHM apMl1pOBaHl1eM.


